Cell parameters from 16

 $0.37\,\times\,0.35\,\times\,0.20$  mm

1771 reflections with

3 standard reflections

every 150 reflections

intensity variation: 1.5%

 $I > 2\sigma(I)$ 

 $\theta_{\rm max} = 25.06^{\circ}$ 

 $l = -18 \rightarrow 17$ 

 $R_{\rm int} = 0.011$ 

 $h = 0 \rightarrow 13$ 

 $k = 0 \rightarrow 9$ 

reflections

 $\theta = 10.9 - 18.8^{\circ}$ 

T = 296 K

Block

Amber

 $\mu = 0.098 \text{ mm}^{-1}$ 

Monoclinic  $P2_1/n$  a = 11.056 (4) Å b = 8.340 (2) Å c = 15.5461 (12) Å  $\beta = 104.829 (13)^{\circ}$   $V = 1385.6 (6) Å^{3}$  Z = 4  $D_x = 1.372 \text{ Mg m}^{-3}$  $D_m$  not measured

#### Data collection

Rigaku AFC-5*R* diffractometer  $\omega$ -2 $\theta$  scans Absorption correction:  $\psi$  scans (North, Phillips & Mathews, 1968)  $T_{min} = 0.947, T_{max} = 1.000$ 2575 measured reflections 2442 independent reflections

### Refinement

| -                               |                                                         |
|---------------------------------|---------------------------------------------------------|
| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.069P)^2]$                  |
| $R[F^2 > 2\sigma(F^2)] = 0.050$ | + 0.476 <i>P</i> ]                                      |
| $wR(F^2) = 0.147$               | where $P = (F_o^2 + 2F_c^2)/3$                          |
| S = 1.045                       | $(\Delta/\sigma)_{\rm max} = 0.002$                     |
| 2441 reflections                | $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm A}^{-3}$ |
| 244 parameters                  | $\Delta \rho_{\rm min}$ = -0.18 e Å <sup>-3</sup>       |
| H atoms treated by a            | Extinction correction: none                             |
| mixture of constrained and      | Scattering factors from                                 |
| independent refinement          | International Tables for                                |
| L L                             | Crystallography (Vol. C)                                |

The structure was solved by direct methods (*SIR*92; Altomare *et al.*, 1994) and expanded using Fourier techniques (*DIRDIF*94; Beurskens *et al.*, 1994). H atoms were found by difference Fourier techniques. Some were refined isotropically and, for the the remainder, coordinates were refined and the isotropic displacement parameters were fixed.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1995a). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995b). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: TEXSAN. Software used to prepare material for publication: TEXSAN.

AD is an EPSRC-funded postdoctoral assistant. We thank the EPSRC for their support for our work related to Moco and the SERC for funds for the purchase of the Rigaku AFC-5R diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1143). Services for accessing these data are described at the back of the journal.

#### References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

- Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands. Brown, D. J. & Jacobsen, N. W. (1961). J. Chem. Soc. pp. 4413–4420.
- Chan, M. K., Mukund, S., Kletzin, A., Adams, M. W. W. & Rees, D. C. (1995). Science, 267, 1463–1469.
- Collison, D., Garner, C. D. & Joule, J. A. (1996). Chem. Soc. Rev. pp. 25-32.
- Dinsmore, A., Birks, J. H., Garner, C. D. & Joule, J. A. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 801-807.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Johnson, J. L., Wuebbens, M. M. & Rajagopalan, K. V. (1989). J. Biol. Chem. 264, 13440–13447.
- Molecular Structure Corporation (1995a). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1995b). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7-1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Romão, M. J., Archer, M., Moura, I., Moura, J. J. G., LeGall, J., Engh, E., Schneider, M., Hof, P. & Huber, R. (1995). Science, 270, 1170–1176.
- Schindelin, H., Kisker, C., Hilton, J., Rajagopalan, K. V. & Rees, D. C. (1996). Science, 272, 1615–1621.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1997). C53, 1669-1671

# Polysulfonylamines. LXXXIX.† N,N-Bis-(methylsulfonyl)benzylamine

DAGMAR HENSCHEL, ARMAND BLASCHETTE AND PETER G. JONES\*

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany. E-mail: jones@xray36. anchem.nat.tu-bs.de

(Received 7 May 1997; accepted 19 June 1997)

#### Abstract

The two independent molecules of the title compound,  $C_9H_{13}NO_4S_2$ , are inverted with respect to each other but otherwise closely similar; unusually, a racemate thus crystallizes in a chiral space group ( $P2_12_12_1$  with Z = 8). As is normal for compounds of type R—  $N(SO_2CH_3)_2$ , the C—N bonds [both 1.493 (3) Å] are lengthened with respect to standard values for acyclic

<sup>†</sup> Part LXXXVIII: Lange, Moers, Blaschette & Jones (1997).

amides. The independent molecules are linked into two 1.498(3) and 1.556(2)Å, respectively (Jones *et al.*, independent chains by C—H···O hydrogen bonding. 1995, and unpublished results from this laboratory).

# Comment

*N*-Alkyl disulfonylamines, R—N(SO<sub>2</sub> $R')_2$  (R = alkyl, R' = alkyl or aryl), can be readily obtained from primary amines by twofold sulfonylation and have been observed to undergo facile and synthetically useful deamination (Baumgarten & Curtis, 1982). Recent results from this laboratory (Jones, Hamann, Schaper, Lange & Blaschette, 1995) have revealed that the N atom in such molecules usually displays a trigonalplanar geometry and that the electron-withdrawing effect of the two sulfonyl groups causes the C—N distances to be significantly longer than the average  $C_{sp^3}$ —N<sub>sp<sup>2</sup></sub> value for acyclic amides, 1.454 Å (Allen *et al.*, 1987). In this context we now report the structure of the title compound, (1).

$$\bigcirc -CH_2 - N(SO_2CH_3)_2$$
(1)

The asymmetric unit of (1) consists of two independent molecules A and A' (Fig. 1). The molecules are closely similar except that they are inverted with respect to each other; a corresponding least-squares fit indicated a mean deviation of 0.08 Å for all non-H atoms. The frozen conformation imparts chirality to the molecules and the structure is thus a rare example of a racemate crystallizing in a chiral space group (excluding cases of spontaneous resolution, where both forms do not exist in the same crystal). Similar cases have been discussed by Görbitz, Kazmeier & Grandel (1997).



Fig. 1. The structure of the title compound in the crystal. Ellipsoids represent 50% probability levels. H-atom radii are arbitrary.

The C—N distance, 1.493 (3) Å in both molecules, is well above the upper quartile value of 1.461 Å for  $C_{sp^3}$ —N<sub>sp2</sub> bonds in acyclic amides (Allen *et al.*, 1987). For comparison, the corresponding C— N bond lengths observed in related molecules *R*— N(SO<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>, where *R* = methyl, cyclobutyl, cyclopropylmethyl or 1-adamantyl, are 1.484 (3), 1.491 (2), 1.498 (3) and 1.556 (2) A, respectively (Jones *et al.*, 1995, and unpublished results from this laboratory). In (1), the angles at N lie in the range 118.27 (14)–120.79 (14)° (*cf.* Table 1), N and N' being 0.064 (2) and 0.079 (2) Å out of the planes defined by the atoms to which they are bonded. Bond lengths and angles within the N(SO<sub>2</sub>CH<sub>3</sub>)<sub>2</sub> moiety are normal for this class of compound, which generally exhibit appreciably shortened S—N bonds [here: average 1.672 (2) Å]; see Jones *et al.* (1995) and other previous papers in this series. The CH<sub>2</sub>—C<sub>ar</sub> distances, 1.511 (3) Å in A and 1.516 (3) Å in A', do not differ significantly from the standard value of 1.510 Å for  $RCH_2$ —C<sub>ar</sub> bonds (Allen *et al.*, 1987).

As quantified by the torsion angles in Table 1, the  $N(SO_2C)_2$  frameworks of both molecules adopt local pseudo- $C_2$  symmetry, while the tilts of the phenyl groups are described by the dihedral angles between their least-squares planes and the corresponding C11, C10, N plane; 56.4 (2)° in A and 49.7 (2)° in A'.

The molecular packing involves C—H···O interactions that may be classed as hydrogen bonds between the O4 and benzylic H atoms (Table 2; Desiraju, 1996). Through these, the molecules are linked by  $2_1$  operators into chains; molecules A parallel to the y axis (Fig. 2) and molecules A' parallel to the x axis.



Fig. 2. Chain of molecules A (see text). Hydrogen bonds are indicated by broken lines. Radii are arbitrary. H atoms other than those of the methylene group have been omitted.

#### Experimental

Compound (1) (m.p. 390 K) was prepared as formerly described (Dalluhn, Pröhl, Henschel, Blaschette & Jones, 1996) and crystallized from  $CH_2Cl_2$ -petroleum ether at 243 K.

Crystal data

| $C_9H_{13}NO_4S_2$              | Mo $K\alpha$ radiation         |
|---------------------------------|--------------------------------|
| $M_r = 263.32$                  | $\lambda = 0.71073 \text{ Å}$  |
| Orthorhombic                    | Cell parameters from 41        |
| $P2_{1}2_{1}2_{1}$              | reflections                    |
| a = 8.3369 (10)  Å              | $\theta = 5.2 - 12.2^{\circ}$  |
| b = 9.5060 (12)Å                | $\mu = 0.452 \text{ mm}^{-1}$  |
| c = 29.565(3) Å                 | T = 173 (2) K                  |
| $V = 2343.0(5) \text{ Å}^3$     | Prism                          |
| Z = 8                           | $0.6 \times 0.6 \times 0.5$ mm |
| $D_x = 1.493 \text{ Mg m}^{-3}$ | Colourless                     |
| $D_m$ not measured              |                                |

## Data collection

| Siemens P4 diffractometer    |
|------------------------------|
| $\omega$ scans               |
| Absorption correction: none  |
| 5774 measured reflections    |
| 5372 independent reflections |
| 4720 reflections with        |
| $I > 2\sigma(I)$             |
| $R_{\rm int} = 0.020$        |

#### Refinement

| 2                                        | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                     |
|------------------------------------------|-------------------------------------------------------------|
| Refinement on F <sup>2</sup>             | $(\Delta/\sigma)_{\rm max} = -0.001$                        |
| $R[F^2 > 2\sigma(F^2)] = 0.032$          | $\Delta \rho_{\rm max} = 0.237 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $wR(F^2) = 0.077$                        | $\Delta \rho_{\rm min} = -0.283 \ {\rm e} \ {\rm \AA}^{-3}$ |
| S = 1.046                                | Extinction correction: none                                 |
| 5372 reflections                         | Scattering factors from                                     |
| 293 parameters                           | International Tables for                                    |
| H atoms treated by a                     | Crystallography (Vol. C)                                    |
| mixture of constrained and               | Absolute configuration:                                     |
| independent refinement                   | Flack (1983)                                                |
| $w = 1/[\sigma^2 (F_o^2) + (0.0443P)^2]$ | Flack parameter = $-0.06$ (6),                              |
| where $P = (F_o^2 + 2F_c^2)/3$           | 2306 Friedel pairs                                          |
|                                          |                                                             |

 $\theta_{\rm max} = 27.51^{\circ}$  $h = -10 \rightarrow 10$ 

 $k = -12 \rightarrow 0$ 

3 standard reflections

every 247 reflections

intensity decay: 5%

 $l = 0 \rightarrow 38$ 

Table 1. Selected geometric parameters (Å, °)

|            | 0           | -               |              |
|------------|-------------|-----------------|--------------|
| N—\$1      | 1.6651 (18) | N'S1'           | 1.6705 (18)  |
| N—\$2      | 1.6777 (18) | N'—S2'          | 1.6723 (17)  |
| S101       | 1.4306 (18) | S1'01'          | 1.4197 (19)  |
| S102       | 1.4319 (18) | S1'             | 1.4249 (18)  |
| S1C1       | 1.753 (2)   | S1'-C1'         | 1.749 (3)    |
| N-C10      | 1.493 (3)   | N'-C10'         | 1.493 (3)    |
| C10-C11    | 1.511 (3)   | C10'—C11'       | 1.516 (3)    |
| S1-N-S2    | 120.48 (11) | S1'-N'-S2'      | 120.48 (11)  |
| C10-N-S1   | 120.79 (14) | C10'-N'-S1'     | 119.94 (14)  |
| C10-N-S2   | 118.27 (14) | C10'-N'-S2'     | 118.86 (15)  |
| 01-S1-N    | 108.38 (10) | 01'—S1'—N'      | 108.05 (10)  |
| 02-S1-N    | 105.73 (10) | O2' - S1' - N'  | 105.83 (11)  |
| 01-S1-C1   | 109.06 (12) | 01'—\$1'—C1'    | 109.31 (13)  |
| O2-S1-C1   | 107.97 (12) | 02'—S1'—C1'     | 107.98 (13)  |
| N-S1-C1    | 105.62 (11) | N'_S1'_C1'      | 105.74 (12)  |
| 01-S1-O2   | 119.25 (12) | 01'—S1'—O2'     | 119.13 (12)  |
| N-C10-C11  | 113.72 (17) | N'-C10'-C11'    | 113.51 (18)  |
| S2-N-S1-01 | 39.91 (16)  | S2'-N'-S1'-O1'  | -39.00 (15)  |
| S2-N-S1-O2 | 168.85 (13) | S2'-N'-S1'-O2'  | -167.65 (12) |
| S2-N-S1-C1 | -76.85 (15) | S2'—N'—S1'—C1'  | 77.95 (16)   |
| S1-N-S2-O3 | 34.18 (16)  | S1'-N'-S2'-O3'  | -34.41 (14)  |
| S1-N-S204  | 162.81 (12) | \$1'—N'—S2'—O4' | -162.51 (12) |
| S1-N-S2-C2 | -81.89 (15) | S1'-N'-S2'-C2'  | 82.26 (15)   |

Table 2. Hydrogen-bonding geometry (Å, °)

| $D$ — $\mathbf{H} \cdot \cdot \cdot \mathbf{A}$ | D—H                   | $\mathbf{H} \cdot \cdot \cdot \mathbf{A}$ | $D \cdot \cdot \cdot A$             | $D = \mathbf{H} \cdots \mathbf{A}$ |
|-------------------------------------------------|-----------------------|-------------------------------------------|-------------------------------------|------------------------------------|
| C10-H10A···O4 <sup>i</sup>                      | 0.99                  | 2.58                                      | 3.435 (3)                           | 144                                |
| C10′—H10D· · ·O4′ <sup>n</sup>                  | 0.99                  | 2.36                                      | 3.172 (3)                           | 139                                |
| Symmetry codes: (i)                             | $-x, y - \frac{1}{2}$ | $\frac{1}{2} - z$ ; (ii)                  | $\frac{1}{2} + x, \frac{1}{2} - y,$ | 1 — z.                             |

Methyl H atoms were refined as rigid groups allowed to rotate but not tip; other H atoms riding.

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: XP (Siemens, 1994). Software used to prepare material for publication: SHELXL93.

We thank the Fonds der Chemischen Industrie for financial support and Mr A. Weinkauf for technical assistance. Mr O. Moers assisted in preparing the figures.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1348). Services for accessing these data are described at the back of the journal.

## References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Baumgarten, R. J. & Curtis, V. A. (1982). The Chemistry of Functional Groups, Suppl. F, edited by S. Patai, pp. 929–997. Chichester: John Wiley & Sons.
- Dalluhn, J., Pröhl, H.-H., Henschel, D., Blaschette, A. & Jones, P. G. (1996). Phosphorus Sulfur Silicon, 114, 149–160.
- Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.
- Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Görbitz, C. H., Kazmeier, U. & Grandel, R. (1997). Acta Cryst. C53, 1302-1305.
- Jones, P. G., Hamann, T., Schaper, W., Lange, I. & Blaschette, A. (1995). Phosphorus Sulfur Silicon, 106, 91–104.
- Lange, I., Moers, O., Blaschette, A. & Jones, P. G. (1997). Z. Anorg. Allg. Chem. In the press.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 1671-1673

# *trans*-(±)-*N*,*N*'-Bis(salicylidene)-1,2-cyclohexanediamine†

Qiancai Liu,‡ Mengxian Ding, Yonghua Lin and Yan Xing

Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 159 Renmin Street, Changchun 130022, People's Republic of China. E-mail: yangliu@public.cc.jl.cn

(Received 21 January 1997; accepted 10 June 1997)

#### Abstract

The title compound,  $C_{20}H_{22}N_2O_2$ , is  $C_2$  symmetric with the two N atoms bonded to salicylidene groups which are *trans* with respect to the cyclohexane ring.

<sup>†</sup> Alternative name: 2,2'-[1,2-cyclohexanediylbis(iminomethyl)]diphenol.

<sup>‡</sup> Present address: Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.